Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5.
نویسندگان
چکیده
Pseudomonas aeruginosa, an opportunistic respiratory pathogen that infects the majority of patients with cystic fibrosis, initiates host inflammatory responses through interaction with airway epithelial cells. The Toll-like receptors (TLRs) are a family of pathogen pattern recognition receptors that play key roles in host innate immunity. In this study we aimed to determine whether TLRs mediate the interaction between P. aeruginosa and airway epithelial cells. Individual murine TLRs (TLR1 to TLR9) and dual combinations of these TLRs that activate an NF-kappaB-driven luciferase reporter in response to PAO1 were screened in HEK 293 cells. TLR5, TLR2, a combination of TLR1 and TLR2, or a combination of TLR2 and TLR6 responded to PAO1. Another P. aeruginosa strain, strain PAK, activated TLR5 similarly, while the isogenic flagellin-deficient strain PAK/fliC and the flagellum-free bacterium Haemophilus influenzae failed to activate TLR5. Reverse transcription-PCR was used to probe the presence of multiple TLRs (including TLR5) in primary human airway epithelial cells (HAECs). Immunostaining with TLR5 antibodies showed that TLR5 was expressed in HAECs and on the apical surface of the human trachea epithelium. In HAECs, PAO1, PAK, and Burkholderia cepacia, but not flagellin-deficient strain PAK/fliC or a B. cepacia fliC mutant, activated the NF-kappaB reporter. Dominant negative TLR5 specifically blocked the response to P. aeruginosa but not to the response to lipoteichoic acid, a specific ligand of TLR2. We also determined that MyD88, IRAK, TRAF6, and Toll-interacting protein (Tollip), but not TIRAP, were involved in the TLR-mediated response to P. aeruginosa in HAECs. These findings demonstrate that the airway epithelial receptor TLR5 senses P. aeruginosa through its flagellin protein, which may have an important role in the initiation of the host inflammatory reaction to clear the invading pathogen.
منابع مشابه
Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism.
Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sft...
متن کاملA Crucial Role of Flagellin in the Induction of Airway Mucus Production by Pseudomonas aeruginosa
Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc...
متن کاملPseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants
The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacteri...
متن کاملPseudomonas aeruginosa LPS or Flagellin Are Sufficient to Activate TLR-Dependent Signaling in Murine Alveolar Macrophages and Airway Epithelial Cells
BACKGROUND The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa...
متن کاملInnate immune responses of human tracheal epithelium to Pseudomonas aeruginosa flagellin, TNF- , and IL-1
Tseng, Jill, Jiun Do, Jonathan H. Widdicombe, and Terry E. Machen. Innate immune responses of human tracheal epithelium to Pseudomonas aeruginosa flagellin, TNF, and IL-1 . Am J Physiol Cell Physiol 290: C678–C690, 2006. First published October 26, 2005; doi:10.1152/ajpcell.00166.2005.—We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 11 شماره
صفحات -
تاریخ انتشار 2005